Методы генетических исследований человека

Если век XIX по праву вошел в историю мировой цивилизации как Век Физики, то стремительно завершающемуся веку XX-му, в котором нам посчастливилось жить, по всей вероятности, уготовлено место Века Биологии, а может быть, и века Генетики.

Действительно, за неполных 100 лет после вторичного открытия законов Г. Менделя генетика прошла триумфальный путь от натурфилосовского понимания законов наследственности и изменчивости через экспериментальное накопление фактов формальной генетики к молекулярно-биологическому пониманию сущности гена, его структуры и функции. От теоретических построений о гене как абстрактной единице наследственности к пониманию его материальной природы как фрагмента молекулы ДНК, кодирующего аминокислотную структуру белка, до клонирования индивидуальных генов, создания подробных генетических карт человека, животных, идентификации генов, мутации которых сопряжены наследственными недугами, разработки методов биотехнологии и генной инженерии, позволяющих направленно получать организмы с заданными наследственными признаками, а также проводить направленную коррекцию мутантных генов человека, т.е. генотерапию наследственных заболеваний. Молекулярная генетика значительно углубила наши представления о сущности жизни, эволюции живой природы, структурно-функциональных механизмов регуляции индивидуального развития. Благодаря ее успехам начато решение глобальных проблем человечества, связанных с охраной его генофонда.

Середина и вторая половина ХХ столетия ознаменовалась значительным уменьшением частоты и даже полной ликвидацией ряда инфекционных заболеваний, снижением младенческой смертности, увеличением средней продолжительности жизни. В развитых странах мира центр внимания служб здравоохранения был перемещен на борьбу с хронической патологией человека, болезнями сердечно-сосудистой системы, онкологическими заболеваниями.

Цели и задачи моего реферата:

·Дать точное определение термину «генетика человека» и рассмотреть суть этого вида генетики;

·Рассмотреть методы изучения наследственности человека.

1. Генетика как наука

8 стр., 3985 слов

Наследственность, гены, здоровье

... генами, лежащими в разных парах хромосом. Для изучения механизма наследования большой интерес представляет вопрос о генетике пола. Именно половые клетки человека — яйцеклетка и сперматозоид — ведают передачей потомству наследственной ...

.1 Основные этапы развития генетики

Истоки генетики, как и всякой науки, следует искать в практике. Генетика возникла в связи с разведением домашних животных и возделыванием растений, а также с развитием медицины. С тех пор как человек стал применять скрещивание животных и растений, он столкнулся с тем фактом, что свойства и признаки потомств зависят от свойств избранных для скрещивания родительских особей. Отбирая и скрещивая лучших потомков, человек из поколения в поколение создавал родственные группы — линии, а затем породы и сорта с характерными для них наследственными свойствами.

Хотя эти наблюдения и сопоставления еще не могли стать базой для формирования науки, однако бурное развитие животноводства и племенного дела, а также растениеводства и семеноводства во второй половине XIX века породило повышенный интерес к анализу явления наследственности.

Развитию науки о наследственности и изменчивости особенно сильно способствовало учение Ч. Дарвина о происхождении видов, которое внесло в биологию исторический метод исследования эволюции организмов. Сам Дарвин приложил немало усилий для изучения наследственности и изменчивости. Он собрал огромное количество фактов, сделал на их основе целый ряд правильных выводов, однако ему не удалось установить закономерности наследственности.

Его современники, так называемые гибридизаторы, скрещивавшие различные формы и искавшие степень сходства и различия между родителями и потомками, также не смогли установить общие закономерности наследования.

Еще одним условием, способствовавшим становлением генетики как науки, явились достижения в изучении строения и поведения соматических и половых клеток. Еще в 70-х годах прошлого столетия рядом исследователей-цитологов (Чистяковом в 1972 г., Страсбургером в 1875 г.) было открыто непрямое деление соматической клетки, названное кариокинезом (Шлейхером в 1878 г.) или митозом (Флеммингом в 1882 г.).

Постоянные элементы ядра клетки в 1888 г. по предложению Вальдейра получили название «хромосомы». В те же годы Флемминг разбил весь цикл деления клетки на четыре главные фазы: профаза, метафаза, анафаза и телофаза.

Одновременно с изучением митоза соматической клетки шло исследование развития половых клеток и механизма оплодотворения у животных и растений. О. Гертвиг в 1876 г. впервые у иглокожих устанавливает слияние ядра сперматозоида с ядром яйцеклетки. Н.Н. Горожанкин в 1880 г. и Е. Страсбургер в 1884 г. устанавливает то же самое для растений: первый — для голосеменных, второй — для покрытосеменных.

В те же Ван-Бенеденом (1883 г.) и другими выясняется кардинальный факт, что в процессе развития половые клетки, в отличие от соматических, претерпевают редукцию числа хромосом ровно вдвое, а при оплодотворении — слиянии женского и мужского ядра — восстанавливается нормальное число хромосом, постоянное для каждого вида. Тем самым было показано, что для каждого вида характерно определенное число хромосом.

Итак, перечисленные условия способствовали возникновению генетики как отдельной биологической дисциплины — дисциплины с собственными предметом и методами исследования.

Официальным рождением генетики принято считать весну 1900 г., когда три ботаника, независимо друг от друга, в трех разных странах, на разных объектах, пришли к открытию некоторых важнейших закономерностей наследования признаков в потомстве гибридов. Г. де Фриз (Голландия) на основании работы с энотерой, маком, дурманом и другими растениями сообщил «о законе расщепления гибридов»; К. Корренс (Германия) установил закономерности расщепления на кукурузе и опубликовал статью «Закон Грегора Менделя о поведении потомства у расовых гибридов»; в том же году К. Чермак (Австрия) выступил в печати со статьей (Об искусственном скрещивании у Pisum Sativum).

8 стр., 3864 слов

Биология : Способы размножения живых организмов. Эволюция размножения

... мутировавшей клетки, которое будет представлять собой новый клеточный клон. Бесполое размножение, воспроизводящее идентичные исходному организму особи, не способствует появлению организмов с новыми вариантами признаков, а тем ... растений формируются споры и иного рода, а именно мейоспоры, образующиеся путем мейоза. Они содержат гаплоидный набор хромосом и дают начало поколению, обычно не похожему на ...

Наука почти не знает неожиданных открытий. Самые блестящие открытия, создающие этапы в ее развитии, почти всегда имеют своих предшественников. Так случилось и с открытием законов наследственности. Оказалось, что три ботаника, открывших закономерность расщепления в потомстве внутривидовых гибридов, всего-навсего «переоткрыли» закономерности наследования, открытые еще в 1865 г. Грегором Менделем и изложенные им в статье «Опыты над растительными гибридами», опубликованной в «трудах» Общества естествоиспытателей в Брюнне (Чехословакия).

Г. Мендель на растениях гороха разрабатывал методы генетического анализа наследования отдельных признаков организма и установил два принципиально важных явления:

. признаки определяются отдельными наследственными факторами, которые передаются через половые клетки;

. отдельные признаки организмов при скрещивании не исчезают, а сохраняются в потомстве в том же виде, в каком они были у родительских организмов.

Для теории эволюции эти принципы имели кардинальное значение. Они раскрыли один из важнейших источников изменчивости, а именно механизм сохранения приспособленности признаков вида в ряду поколений. Если бы приспособительные признаки организмов, возникшие под контролем отбора, поглощались, исчезали при скрещивании, то прогресс вида был бы невозможен.

Все последующее развитие генетики было связано с изучением и расширением этих принципов и приложением их к теории эволюции и селекции.

Из установленных принципиальных положений Менделя логически вытекает целый ряд проблем, которые шаг за шагом получают свое разрешение по мере развития генетики. В 1901 г. де Фриз формулирует теорию мутаций, в которой утверждается, что наследственные свойства и признаки организмов изменяются скачкообразно — мутационно.

В 1903 г. датский физиолог растений В. Иоганнсен публикует работу «О наследовании в популяциях и чистых линиях», в которой экспериментально устанавливается, что относящиеся к одному сорту внешне сходные растения являются наследственно различными — они составляют популяцию. Популяция состоит из наследственно различных особей или родственных групп — линий. В этом же исследовании наиболее четко устанавливается, существование двух типов измен6чивости организмов: наследственной, определяемой генами, и ненаследственной, определяемой случайным сочетанием факторов, действующих на проявление признаков.

9 стр., 4273 слов

ДНК — материальный носитель наследственности

... носители наследственной программы. Дальнейшая разработка хромосомной теории наследственности, объединяющей представления о наследственных ... молекулы ДНК. Длинная молекула образована двойной спиралью, а комплиментарное взаимодействие между двумя нитями этой спирали позволяет понять, каким образом генетическая информация ... признаки ... генетики - единство дискретности и непрерывности наследственного ...

На следующем этапе развития генетики было доказано, что наследственные формы связаны с хромосомами. Первым фактом, раскрывающим роль хромосом в наследственности, было доказательство роли хромосом в определении пола у животных и открытие механизма расщепления по полу 1:1.

С 1911 г. Т. Морган с сотрудниками в Колумбийском университете США начинает публиковать серию работ, в которой формулирует хромосомную теорию наследственности. Экспериментально доказывая, что основными носителями генов являются хромосомы, и что гены располагаются в хромосомах линейно.

В 1922 г. Н.И. Вавилов формулирует закон гомологических рядов в наследственной изменчивости, согласно которому родственные по происхождению виды растений и животных имеют сходные ряды наследственной изменчивости.

Применяя этот закон, Н.И. Вавилов установил центры происхождения культурных растений, в которых сосредоточено наибольшее разнообразие наследственных форм.

В 1925 г. у нас в стране Г.А. Надсон и Г.С. Филиппов на грибах, а в 1927 г. Г. Мёллер в США на плодовой мушке дрозофиле получили доказательство влияния рентгеновых лучей на возникновение наследственных изменений. При этом было показано, что скорость возникновения мутаций увеличивается более чем в 100 раз. Этими исследованиями была доказана изменчивость генов под влиянием факторов внешней среды. Доказательство влияния ионизирующих излучений на возникновение мутаций привело к созданию нового раздела генетики — радиационной генетики, значение которой еще более выросло с открытием атомной энергии.

В 1934 г. Т. Пайнтер на гигантских хромосомах слюнных желез двукрылых доказал, что прерывность морфологического строения хромосом, выражающаяся в виде различных дисков, соответствует расположению генов в хромосомах, установленному ранее чисто генетическими методами. Этим открытием было положено начало изучению структуры и функционирования гена в клетке.

В период с 40-х годов и по настоящие время сделан ряд открытия (в основном на микроорганизмах) совершенно новых генетических явлений, раскрывших возможности анализа структуры гена на молекулярном уровне. В последние годы с введением в генетику новых методов исследования, заимствованных из микробиологии мы подошли к разгадке того, каким образом гены контролируют последовательность расположения аминокислот в белковой молекуле.

Прежде всего, следует сказать о том, что теперь полностью доказано, что носители наследственности являются хромосомы, которые состоят из пучка молекул ДНК.

Были проведены довольно простые опыты: из убитых бактерий одного штамма, обладающего особым внешним признаком, выделили чистую ДНК и перенесли в живые бактерии другого штамма, после чего размножающиеся бактерии последнего приобрели признак первого штамма. Подобные многочисленные опыты показывают, что носителем наследственности является именно ДНК.

3 стр., 1156 слов

Наследственные заболевания человека

... в наследственности людей, прогнозировать эти процессы. Эта работа выполняется в Институте общей генетики Академии наук Российской Федерации. В данном реферате поставлена цель проанализировать работы, посвященные исследованию наследственных заболеваний человека. Учитывая, ...

В 1953 г. Ф. Крик (Англия) и Дж. Уотстон (США) расшифровали строение молекулы ДНК. Они установили, что каждая молекула ДНК слагается из двух полидезоксирибонуклеиновых цепочек, спирально закрученных вокруг общей оси.

В настоящее время найдены подходы к решению вопроса об организации наследственного кода и экспериментальной его расшифровке. Генетика совместно с биохимией и биофизикой вплотную подошла к выяснению процесса синтеза белка в клетке и искусственному синтезу белковой молекулы. Этим начинается совершенно новый этап развития не только генетики, но и всей биологии в целом.

Развитие генетики до наших дней — это непрерывно расширяющийся фонт исследований функциональной, морфологической и биохимической дискретности хромосом. В этой области сделано уже много сделано уже очень много, и с каждым днем передний край науки приближается к цели — разгадки природы гена. К настоящему времени установлен целый ряд явлений, характеризующих природу гена. Во-первых, ген в хромосоме обладает свойством самовоспроизводится (авторепродукции); во-вторых, он способен мутационно изменяться; в-третьих, он связан с определенной химической структуры дезоксирибонуклеиновой кислоты — ДНК; в-четвертых, он контролирует синтез аминокислот и их последовательностей в белковой молекулы. В связи с последними исследованиями формируется новое представление о гене как функциональной системе, а действие гена на определение признаков рассматривается в целостной системе генов — генотипе.

Раскрывающиеся перспективы синтеза живого вещества привлекают огромное внимание генетиков, биохимиков, физиков и других специалистов.

1.2 Основные задачи генетики

генетика биология наследственность генеалогический

Генетические исследования преследуют цели двоякого рода: познание закономерностей наследственности и изменчивости и изыскание путей практического использования этих закономерностей. То и другое тесно связано: решение практических задач основывается на заключениях, полученных при изучении фундаментальных генетических проблем и в то же время доставляет фактические данные, важные для расширения и углубления теоретических представлений.

От поколения к поколению передается (хотя иногда и в несколько искаженном виде) информация о всех многообразных морфологических, физиологических и биохимических признаках, которые должны реализоваться у потомков. Исходя из такого кибернетического характера генетических процессов, удобно сформулировать четыре основные теоретические проблемы, исследуемые генетикой:

Во-первых, проблема хранения генетической информации. Изучается, в каких материальных структурах клетки заключена генетическая информация и как она там закодирована.

Во-вторых, проблема передачи генетической информации. Изучаются механизмы и закономерности передачи генетической информации от клетки к клетке и от поколения к поколению.

В-третьих, проблема реализации генетической информации. Изучается, как генетическая информация воплощается в конкретных признаках развивающегося организма, взаимодействуя при этом с влияниями окружающей среды, в той или иной мере изменяющей эти признаки, подчас значительно.

4 стр., 1928 слов

Преступность и генетика

... ген преступности не так-то просто. Но трудности не смутили ученых — исследования криминальной генетической предрасположенности продолжались. Очень основательное, весьма длительное исследование близнецов ... ген", под которым понимал наследственный задаток признака. Позже было открыто что каждому организму свойственен определенный набор хромосом, человеку, например, — 23 пары хромосом. Развитие генетики ...

В-четвертых, проблема изменения генетической информации. Изучаются типы, причины и механизмы этих изменений.

Достижения генетики используются для выбора типов скрещиваний, наилучшим образом влияющих на генотипическую структуру (расщепление) у потомков, для выбора наиболее эффективных способов отбора, для регуляции развития наследственных признаков, управления мутационным процессом, направленного изменения генома организма с помощью генетической инженерии и сайт-специфичного мутагенеза. Знание того, как разные способы отбора влияют на генотипическую структуру исходной популяции (породу, сорт), позволяет использовать те приемы отбора, которые наиболее быстро изменят эту структуру в желаемую сторону. Понимание путей реализации генетической информации в ходе онтогенеза и влияния, оказываемого на эти процессы окружающей средой, помогают подбирать условия, способствующие наиболее полному проявлению у данного организма ценных признаков и «подавлению» нежелательных. Это имеет важное значение для повышения продуктивности домашних животных, культурных растений и промышленных микроорганизмов, а также для медицины, так как позволяет предупреждать проявление ряда наследственных болезней человека.

Исследование физических и химических мутагенов и механизма их действия делает возможным искусственно получать множество наследственно измененных форм, что способствует созданию улучшенных штаммов полезных микроорганизмов и сортов культурных растений. Познание закономерностей мутационного процесса необходимо для разработки мер по защите генома человека и животных от повреждений физическими (гл. обр. радиацией) и химическими мутагенами.

Успех любых генетических исследований определяется не только знанием общих законов наследственности и изменчивости, но и знанием частной генетики организмов, с которыми ведется работа. Хотя основные законы генетики универсальны, они имеют у разных организмов и особенности, обусловленные различиями, например, в биологии размножения и строении генетического аппарата. Кроме того, для практических целей необходимо знать, какие гены участвуют в определении признаков данного организма. Поэтому изучение генетики конкретных признаков организма представляет собой обязательный элемент прикладных исследований.

.3 Основные разделы генетики

Современная генетика представлена множеством разделов, представляющих как теоретический, так и практический интерес. Среди разделов общей, или «классической», генетики основными являются: генетический анализ, основы хромосомной теории наследственности, цитогенетика, цитоплазматическая (внеядерная) наследственность, мутации, модификации. Интенсивно развиваются молекулярная генетика, генетика онтогенеза (феногенетика), популяционная генетика (генетическое строение популяций, роль генетических факторов в микроэволюции), эволюционная генетика (роль генетических факторов в видообразовании и макроэволюции), генетическая инженерия, генетика соматических клеток, иммуногенетика, частная генетика — генетика бактерий, генетика вирусов, генетика животных, генетика растений, генетика человека, медицинская генетика и мн. др. Новейшая отрасль генетики — геномика — изучает процессы становления и эволюции геномов.

3 стр., 1447 слов

Методы медицинской генетики

... – изучить методы медицинской генетики на основании литературных источников. Задачи: Рассмотреть методы, применяемые для изучения наследственных заболеваний человека; Объект исследования – генетика человека. Предмет исследования – методы изучения наследственных заболеваний человека. Глава 1. Методы медицинской генетики 1.1. Генеалогический метод медицинской генетики Генеалогический метод – изучение ...

.4 Влияние генетики на другие отрасли биологии

Генетика занимает центральное место в современной биологии, изучая явления наследственности и изменчивости, в большей степени определяющие все главные свойства живых существ. Универсальность генетического материала и генетического кода лежит в основе единства всего живого, а многообразие форм жизни есть результат особенностей его реализации в ходе индивидуального и исторического развития живых существ. Достижения генетики входят важной составной частью почти во все современные биологические дисциплины. Синтетическая теория эволюции представляет собою теснейшее сочетание дарвинизма и генетики. То же можно сказать о современной биохимии, основные положения которой о том, как контролируется синтез главнейших компонентов живой материи — белков и нуклеиновых кислот, основаны на достижениях молекулярной генетики. Цитология главное внимание уделяет строению, репродукции и функционированию хромосом, пластид и митохондрий, т. е. элементам, в которых записана генетическая информация. Систематика животных, растений и микроорганизмов все шире пользуется сравнением генов, кодирующих ферменты и другие белки, а также прямым сопоставлением нуклеотидных последовательностей хромосом для установления степени родства таксонов и выяснения их филогении. Разные физиологические процессы растений и животных исследуются на генетических моделях; в частности, при исследованиях физиологии мозга и нервной системы пользуются специальными генетическими методами, линиями дрозофилы и лабораторных млекопитающих. Современная иммунология целиком построена на генетических данных о механизме синтеза антител. Достижения генетики, в той или иной мере, часто очень значительной, входят составной частью в вирусологию, микробиологию, эмбриологию. С полным правом можно сказать, что современная генетика занимает центральное место среди биологических дисциплин.

2. Генетика человека (антропогенетика)

1. Методы изучения наследственности человека: генеалогические, близнецовые, цитогенетические, биохимические и популяционные

. Генетические заболевания и наследственные болезни. Значение медико-генетических консультаций и пренатальной диагностики. Возможности генетической коррекции заболеваний.

Генетика человека- это особый раздел генетики, который изучает особенности наследования признаков у человека, наследственные заболевания (медицинская генетика), генетическую структуру популяций человека. Генетика человека является теоретической основой современной медицины и современного здравоохранения.

В настоящее время твердо установлено, что в живом мире законы генетики носят всеобщий характер, действительны они и для человека.

Однако, поскольку человек — это не только биологическое, но и социальное существо, генетика человека отличается от генетики большинства организмов рядом особенностей:

  • для изучения наследования человека неприменим гибридологический анализ (метод скрещиваний);
  • поэтому для генетического анализа используются специфические методы: генеалогический (метод анализа родословных), близнецовый, а также цитогенетические, биохимические, популяционные и некоторые другие методы;

для человека характерны социальные признаки, которые не встречаются у других организмов, например, темперамент, сложные коммуникационные системы, основанные на речи, а также математические, изобразительные, музыкальные и иные способности;

8 стр., 3845 слов

Этические проблемы изучения генетики

... метод клонирования нельзя считать абсолютно безопасным для человека. ... ее болезни, признаки старения ... медицинской генетики считается ... Результатом клонирования может стать обеднение генофонда. При бесполом размножении запрограммированность генотипа определяет меньшее разнообразие взаимодействий развивающегося организма с изменяющимися условиями среды. Что касается методического аспекта ...

благодаря общественной поддержке возможно выживание и существование людей с явными отклонениями от нормы (в дикой природе такие организмы оказываются нежизнеспособными).

Генетика человека изучает особенности наследования признаков у человека, наследственные заболевания (медицинская генетика), генетическую структуру популяций человека. Генетика человека является теоретической основой современной медицины и современного здравоохранения. Известно несколько тысяч собственно генетических заболеваний, которые почти на 100% зависят от генотипа особи. К наиболее страшным из них относятся: кислотный фиброз поджелудочной железы, фенилкетонурия, галактоземия, различные формы кретинизма, гемоглобинопатии, а также синдромы Дауна, Тернера, Кляйнфельтера. Кроме того, существуют заболевания, которые зависят и от генотипа, и от среды: ишемическая болезнь, сахарный диабет, ревматоидные заболевания, язвенные болезни желудка и двенадцатиперстной кишки, многие онкологические заболевания, шизофрения и другие заболевания психики.

Задачи медицинской генетики заключаются в своевременном выявлении носителей этих заболеваний среди родителей, выявлении больных детей и выработке рекомендаций по их лечению. Большую роль в профилактике генетически обусловленных заболеваний играют генетико-медицинские консультации и пренатальная диагностика (то есть выявление заболеваний на ранних стадиях развития организма).

Существуют специальные разделы прикладной генетики человека (экологическая генетика, фармакогенетика, генетическая токсикология), изучающие генетические основы здравоохранения. При разработке лекарственных препаратов, при изучении реакции организма на воздействие неблагоприятных факторов необходимо учитывать как индивидуальные особенности людей, так и особенности человеческих популяций.

Приведем примеры наследования некоторых морфофизиологических признаков.

.Доминантные и рецессивные признаки у человека

(для некоторых признаков указаны контролирующие их гены) (табл.№1см.пр.)

. Неполное доминирование (указаны гены, контролирующие признак) (табл.№2см.пр.)

. Наследование цвета волос (контролируется четырьмя генами, наследуется полимерно) (табл.№3.см.пр.)

3. Методы изучения наследственности человека

Родословная — это схема, отражающая связи между членами семьи. Анализируя родословные, изучают какой-либо нормальный или (чаще) патологический признак в поколениях людей, находящихся в родственных связях.

3 стр., 1475 слов

Приемы и методы выявления признаков подделки документов

... зачеркнутые тексты, разорванные, сожженные бланки, выявить признаки технической подделки подписей, оттисков печатей и штампов, определить ... практика свидетельствует о невысокой эффективности вышеуказанных норм. Например, несмотря на широкую распространенность преступлений, связанных с ... на основе теоретических положений и специальных методов, заимствованных из естественных и технических наук, ...

3.1 Генеалогические методы

Генеалогические методы используются для определения наследственного или ненаследственного характера признака, доминантности или рецессивности, картирования хромосом, сцепления с полом, для изучения мутационного процесса. Как правило, генеалогический метод составляет основу для заключений при медико-генетическом консультировании.

При составлении родословных применяют стандартные обозначения. Персона (индивидуум), с которого начинается исследование, называется пробандом (если родословная составляется таким образом, что от пробанда спускаются к его потомству, то ее называют генеалогическим древом).

Потомок брачной пары называется сиблингом, родные братья и сестры — сибсами, кузены — двоюродными сибсами и т.д. Потомки, у которых имеется общая мать (но разные отцы), называются единоутробными, а потомки, у которых имеется общий отец (но разные матери) — единокровными; если же в семье имеются дети от разных браков, причем, у них нет общих предков (например, ребенок от первого брака матери и ребенок от первого брака отца), то их называют сводными.

Каждый член родословной имеет свой шифр, состоящий из римской цифры и арабской, обозначающих соответственно номер поколения и номер индивидуума при нумерации поколений последовательно слева направо. При родословной должна быть легенда, т. е. пояснение к принятым обозначениям. При близкородственных браках высока вероятность К обнаружения у супругов одного и того же неблагоприятного аллеля или хромосомной аберрации.

Приведем значения К [X-Y] для некоторых пар родственников при моногамии:

К [родители-потомки]=К [сибсы]=1/2;

К [дед-внук]=К [дядя-племянник]=1/4;

К [двоюродные сибсы]= К [прадед-правнук]=1/8;

К [троюродные сибсы]=1/32;

К [четвероюродные сибсы]=1/128. Обычно столь дальние родственники в составе одной семьи не рассматриваются.

На основании генеалогического анализа дается заключение о наследственной обусловленности признака. Например, детально прослежено наследование гемофилии А среди потомков английской королевы Виктории. Генеалогический анализ позволил установить, что гемофилия А — это рецессивное заболевание, сцепленное с полом.

.2 Близнецовый метод

Близнецы — это два и более ребенка, зачатые и рожденные одной матерью почти одновременно. Термин «близнецы» используется по отношению к человеку и тем млекопитающим, у которых в норме рождается один ребенок (детеныш).

Различают однояйцевых и разнояйцевых близнецов.

Однояйцевые (монозиготные, идентичные) близнецы возникают на самых ранних стадиях дробления зиготы, когда два или четыре бластомера сохраняют способность при обособлении развиться в полноценный организм. Поскольку зигота делится митозом, генотипы однояйцевых близнецов, по крайней мере, исходно, совершенно идентичны. Однояйцевые близнецы всегда одного пола, в период внутриутробного развития у них одна плацента.

Разнояйцевые (дизиготные, неидентичные) близнецы возникают иначе — при оплодотворении двух или нескольких одновременно созревших яйцеклеток. Таким образом, они имеют около 50% общих генов. Другими словами, они подобны обычным братьям и сестрам по своей генетической конституции и могут быть как однополыми, так и разнополыми.

Таким образом, сходство между однояйцевыми близнецами определяется и одинаковыми генотипами, и одинаковыми условиями внутриутробного развития. Сходство между разнояйцевыми близнецами определяется только одинаковыми условиями внутриутробного развития.

Частота рождения близнецов в относительных цифрах невелика и составляет около 1%, из них 1/3 приходится на монозиготных близнецов. Однако в пересчете на общую численность населения Земли в мире проживает свыше 30 млн. разнояйцевых и 15 млн. однояйцевых близнецов.

Для исследований на близнецах очень важно установить достоверность зиготности. Наиболее точно зиготность устанавливают с помощью реципрокной трансплантации небольших участков кожи. У дизиготных близнецов трансплантаты всегда отторгаются, тогда как у монозиготных близнецов пересаженные кусочки кожи успешно приживаются. Так же успешно и длительно функционируют трансплантированные почки, пересаженные от одного из монозиготных близнецов другому.

При сравнении однояйцевых и разнояйцевых близнецов, воспитанных в одной и той же среде, можно сделать заключение о роли генов в развитии признаков. Условия послеутробного развития для каждого из близнецов могут оказаться разными. Например, монозиготные близнецы были разлучены через несколько дней после рождения и воспитывались в разных условиях. Сравнение их через 20 лет по многим внешним признакам (рост, объем головы, число бороздок на отпечатках пальцев и т. д.) выявило лишь незначительные различия. В то же время, среда оказывает воздействие на ряд нормальных и патологических признаков.

Близнецовый метод позволяет делать обоснованные заключения о наследуемости признаков: роли наследственности, среды и случайных факторов в определении тех или иных признаков человека,

Наследуемость — это вклад генетических факторов в формирование признака, выраженный в долях единицы или процентах.

Для вычисления наследуемости признаков сравнивают степень сходства или различия по ряду признаков у близнецов разного типа.

Рассмотрим некоторые примеры, иллюстрирующие сходство (конкордантность) и различие (дискордантность) многих признаков(табл.№4.см.пр.)

Обращает на себя внимание высокая степень сходства однояйцевых близнецов по таким тяжелым заболеваниям, как шизофрения, эпилепсия, сахарный диабет.

Кроме морфологических признаков, а также тембра голоса, походки, мимики, жестикуляции и т. д. изучают антигенную структуру клеток крови, белки сыворотки, способность ощущать вкус некоторых веществ.

Особый интерес представляет наследование социально значимых признаков: агрессивности, альтруизма, творческих, исследовательских, организаторских способностей. Считается, что социально значимые признаки примерно на 80 % обусловлены генотипом.

.3 Цитогенетические (кариотипические) методы

Цитогенетические методы используются, в первую очередь, при изучении кариотипов отдельных индивидов. Кариотип человека довольно хорошо изучен.Применение дифференциальной окраски позволяет точно идентифицировать все хромосомы. Общее число хромосом в гаплоидном наборе равно 23. Из них 22 хромосомы одинаковы и у мужчин, и у женщин; они называются аутосомы. В диплоидном наборе (2n=46) каждая аутосома представлена двумя гомологами. Двадцать третья хромосома является половой хромосомой, она может быть представлена или X или Y-хромосомой. Половые хромосомы у женщин представлены двумя X-хромосомами, а у мужчин одной X-хромосомой и одной Y-хромосомой.

Изменение кариотипа, как правило, связано с развитием генетических заболеваний.

Благодаря культивированию клеток человека in vitro можно быстро получить достаточно большой материал для приготовления препаратов. Для кариотипирования обычно используют кратковременную культуру лейкоцитов периферической крови.

Цитогенетические методы используются и для описания интерфазных клеток. Например, по наличию или отсутствию полового хроматина (телец Барра, представляющих собой инактивированные X-хромосомы) можно не только определять пол индивидов, но и выявлять некоторые генетические заболевания, связанные с изменением числа X-хромосом.

Картирование хромосом человека.

Для картирования генов человека широко используются методы биотехнологии. В частности, методы клеточной инженерии позволяют объединять различные типы клеток. Слияние клеток, принадлежащих к разным биологическим видам, называется соматической гибридизацией. Сущность соматической гибридизации заключается в получении синтетических культур путем слияния протопластов различных видов организмов. Для слияния клеток используют различные физико-химические и биологические методы. После слияния протопластов образуются многоядерные гетерокариотические клетки. В дальнейшем при слиянии ядер образуются синкариотические клетки, содержащие в ядрах хромосомные наборы разных организмов. При делении таких клеток in vitro образуются гибридные клеточные культуры. В настоящее время получены и культивируются клеточные гибриды «человек × мышь», «человек × крыса» и многие другие.

В гибридных клетках, полученных из разных штаммов разных видов, один из родительских геномов постепенно теряет хромосомы. Эти процессы интенсивно протекают, например, в клеточных гибридах между мышью и человеком. Если при этом следить за каким-либо биохимическим маркером (например, определенным ферментом человека) и одновременно проводить цитогенетический контроль, то, в конце концов, можно связать исчезновение хромосомы одновременно с биохимическим признаком. Это означает, что ген, кодирующий этот признак, локализован в данной хромосоме.

Дополнительная информация о локализации генов может быть получена при анализе хромосомных мутаций (делеций).

.4 Биохимические методы

Все многообразие биохимических методов делится на две группы:

а) Методы, основанные на выявлении определенных биохимических продуктов, обусловленных действием разных аллелей. Легче всего выявлять аллели по изменению активности ферментов или по изменению какого-либо биохимического признака.

б) Методы, основанные на непосредственном выявлении измененных нуклеиновых кислот и белков с помощью гель-электрофореза в сочетании с другими методиками (блот-гибридизации, авторадиографии).

Использование биохимических методов позволяет выявить гетерозиготных носителей заболеваний. Например, у гетерозиготных носителей гена фенилкетонурии изменяется уровень фенилаланина в крови.

Методы генетики мутагенеза

Мутационный процесс у человека у человека, как и у всех других организмов, ведет к возникновению аллелей и хромосомных перестроек, отрицательно влияющих на здоровье.

Генные мутации. Около 1% новорожденных заболевают вследствие генных мутаций, из которых часть вновь возникшие. Темп мутирования различных генов в генотипе человека неодинаков. Известны гены, которые мутирует с частотой 10-4 на гамету на поколение. Однако большинство других генов мутируют с частотой, в сотни раз меньшей (10-6).

Ниже приведены примеры наиболее частых генных мутаций у человека (табл.№ 5.см.пр.)

Хромосомные и геномные мутации в абсолютном большинстве возникают в половых клетках родителей. Один из 150 новорожденных несет хромосомную мутацию. Около 50% ранних абортов обусловлено хромосомными мутациями. Это связано с тем, что одна из 10 гамет человека является носителем структурных мутаций. Возраст родителей, особенно возраст матерей, играет важную роль в увеличении частоты хромосомных, а возможно, и генных мутаций.

Полиплоидия у человека встречается очень редко. Известны случая рождения триплоидов — эти новорожденные рано умирают. Тетраплоиды обнаружены среди абортированных зародышей.

В то же время существуют факторы, которые снижают частоту мутаций — антимутагены. К антимутагенам относятся некоторые витамины-антиоксиданты (например, витамин Е, ненасыщенные жирные кислоты), серосодержащие аминокислоты, а также различные биологически активные вещества, которые повышают активность репарационных систем.

.5 Популяционные методы

Главными чертами человеческих популяций являются: общность территории, на которой живет данная группа людей, и возможность свободного вступления в брак. Факторами изоляции, т. е. ограничения свободы выбора супругов, у человека могут быть не только географические, но и религиозные и социальные барьеры.

В популяциях человека наблюдается высокий уровень полиморфизма по многим генам: то есть один и тот же ген представлен разными аллелями, что приводит к существованию нескольких генотипов и соответствующих фенотипов. Таким образом, все члены популяции отличаются друг от друга в генетическом отношении: практически в популяции невозможно найти даже двух генетически одинаковых людей (за исключением однояйцевых близнецов).

В популяциях человека действуют различные формы естественного отбора. Отбор действует как во внутриутробном состоянии, так и в последующие периоды онтогенеза. Наиболее выражен стабилизирующий отбор, направленный против неблагоприятных мутаций (например, хромосомных перестроек).

Классический пример отбора в пользу гетерозигот — распространение серповидноклеточной анемии.

Популяционные методы позволяют оценить частоты одних и тех же аллелей в разных популяциях. Кроме того, популяционные методы позволяют изучать мутационный процесс у человека. По характеру радиочувствительности человеческая популяция генетически неоднородна. У некоторых людей с генетически обусловленными дефектами репарации ДНК радиочувствительность хромосом повышена в 5…10 раз по сравнению с большинством членов популяцией.

Заключение

Итак, адекватно воспринимать происходящую на наших глазах революцию в биологии и в медицине, уметь воспользоваться ее заманчивыми плодами и избежать опасных для человечества соблазнов — вот, что необходимо сегодня и врачам, и биологам, и представителям других специальностей, и просто образованному человеку.

Уберечь генофонд человечества, всячески защищая его от рискованных вмешательств, и при этом извлечь максимальную выгоду из уже полученной бесценной информации в плане диагностики, профилактики и лечения многих тысяч наследственно обусловленных недугов — вот задача, которую необходимо решать уже сегодня и с которой мы войдем в новый 21-й век.

В своем реферате я поставила задачи, которые мне нужно было рассмотреть. Я больше узнала о генетике. Узнала что же такое генетика. Рассмотрела ее основные этапы развития, задачи и цели современной генетики. Так же я рассмотрела одну из разновидностей генетики- генетику человека. Дала точное определение этому термину и рассмотрела суть этого вида генетики. Так же в моем реферате мы рассмотрели виды изучения наследственности человека. Их разновидности и суть каждого метода.

Литература

[Электронный ресурс]//URL: https://urveda.ru/referat/nasledovanie-intellekta/

·Энциклопедия. Человек. том 18. часть первая. Володин В.А.- М.: Аволта+, 2002г.;

·Биология. Общие закономерности. Захаров В.Б., Мамонтов С.Г., Сивоглазов В.И. — М.: Школа-Пресс, 1996г.;

·<#»justify»>Приложение

Таблица № 1 Доминантные и рецессивные признаки у человека (для некоторых признаков указаны контролирующие их гены)

ДоминантныеРецессивныеНормальная пигментация кожи, глаз, волосАльбинизмБлизорукостьНормальное зрениеНормальное зрениеНочная слепотаЦветовое зрениеДальтонизмКатарактаОтсутствие катарактыКосоглазиеОтсутствие косоглазияТолстые губыТонкие губыПолидактилия (добавочные пальцы)Нормальное число пальцевБрахидактилия (короткие пальцы)Нормальная длина пальцевВеснушкиОтсутствие веснушекНормальный слухВрожденная глухотаКарликовостьНормальный ростНормальное усвоение глюкозыСахарный диабетНормальная свертываемость кровиГемофилияКруглая форма лица (R-)Квадратная форма лица (rr)Ямочка на подбородке (А-)Отсутствие ямочки (аа)Ямочки на щеках (D-)Отсутствие ямочек (dd)Густые брови (B-)Тонкие брови (bb)Брови не соединяются (N-)Брови соединяются (nn)Длинные ресницы (L-)Короткие ресницы (ll)Круглый нос (G-)Заостренный нос (gg)Круглые ноздри (Q-)Узкие ноздри (qq)

Таблица № 2Неполное доминирование (указаны гены, контролирующие признак)

ПризнакиВариантыРасстояние между глазами — ТБольшоеСреднееМалоеРазмер глаз — ЕБольшиеСредниеМаленькиеРазмеры рта — МБольшойСреднийМаленькийТип волос — СКурчавыеВьющиесяПрямыеЦвет бровей — НОчень темныеТемныеСветлыеРазмер носа — FБольшойСреднийМаленькийТаблица № 3 Наследование цвета волос (контролируется четырьмя генами, наследуется полимерно)

Количество доминантных аллелейЦвет волос8Черные7Темно-коричневые6Темно-каштановые5Каштановые4Русые3Светло-русые2Блондин1Очень светлый блондин0Белые

Таблица № 4

а) Степень различия (дискордантность) по ряду нейтральных признаков у близнецов

Признаки, контролируемые небольшим числом геновЧастота (вероятность) появления различий, %Наследуемость, %однояйцевыеразнояйцевыеЦвет глаз0,57299Форма ушей2,08098Цвет волос3,07796Папиллярные линии8,06087среднее< 1 %≈ 55 %95 %Биохимические признаки0,0от 0 до 100100 %Цвет кожи0,055Форма волос0,021Форма бровей0,049Форма носа0,066Форма губ0,035

б) Степень сходства (конкордантность) по ряду заболеваний у близнецов

Признаки, контролируемые большим числом генов и зависящие от негенетических факторовЧастота появления сходства, %Наследуемость, %однояйцевыеразнояйцевыеУмственная отсталость973795Шизофрения691066Сахарный диабет651857Эпилепсия673053среднее≈ 70 %≈ 20 %≈ 65 %Преступность (?)682856 %

Таблица № 5

Типы и названия мутацийЧастота мутаций (на 1 млн. гамет)Аутосомно-доминантныеПоликистоз почек65…120Нейрофиброматоз65…120Множественный полипоз толстой кишки10…50Аномалия лейкоцитов Пельгера9…27Несовершенный остеогенез7…13Синдром Марфана4…6Аутосомно-рецессивныеМикроцефалия27Ихтиоз (не сцепленный с полом)11Рецессивные, сцепленные с поломМышечная дистрофия Дюшена43…105Гемофилия А37…52Гемофилия В2…3Ихтиоз (сцепленный с полом)24