Верификация и фальсификация

Контрольная работа

Министерство информационных технологий и связи РФ

Федеральное агентство связи , ГОУ ВПО « Сибирский государственный университет , Телекоммуникаций и связи» , Уральский технический институт связи и информатики (филиал)

Контрольная работа

Концепции современного естествознания

Выполнил: студент группы Э 11 БС

Проверил: преподаватель

Корякова И.П

Екатеринбург 2012

  1. В чем заключаются принципы верификации и фальсификации? Приведите пример нефальсифицируемого утверждения

Первый принцип – принцип верификации: любое понятие или суждение имеет научный смысл если оно может быть сведено к эмпирически проверяемой форме, или оно само не может иметь такой формы, то эмпирическое подтверждение должны иметь ее следствия, одна принцип верификации применим ограниченно, в некоторых областях современной науки его использовать нельзя.

Американский философ К. Поппер предложил другой принцип – принцип фальсификации, в его основе лежит тот факт, что прямое подтверждение теории часто затруднено невозможностью учесть все частные случаи ее действия, а для опровержения теории достаточно всего одного случая с ней не совпадающего, поэтому если теория сформулирована так, что ситуация в которой она будет опровергнута может существовать, то такая теория является научной. Теория неопровержимая в принципе не может быть научной.

пример нефальсифицируемого утверждения: «Наша Вселенная была сотворена Богом». Никак. Вот и нефальсифицируемость.

  1. Какова скорость света? Опишите, как было установлено ее значение. В чем отличие поведения света по сравнению с другими материальными объектами?

Свет распространяется с гигантской скоростью – 299796+-4 км/сек.

Впервые С. с. определил в 1676 О. К. Рёмер по изменению промежутков времени между затмениями спутников Юпитера. В 1728 её установил Дж. Брадлей, исходя из своих наблюдений аберрации света звёзд. <В 1849 А. И. Л. Физо первым измерил С. с. по времени прохождения светом точно известного расстояния (базы); т. к. показатель преломления воздуха очень мало отличается от 1, то наземные измерения дают величину, весьма близкую к с. В опыте Физо пучок света от источника . (рис. 1), отражённый полупрозрачным зеркалом N, периодически прерывался вращающимся зубчатым диском W, проходил базу MN (ок. 8 км) н, отразившись от зеркала М, возвращался к диску. Попадая на зубец, свет не достигал наблюдателя, а попавший в промежуток между зубцами свет можно было наблюдать через окуляр Е. По известным скоростям вращения диска определялось время прохождения светом базы. Физо получил значение с = 313300 км/с В 1862 Ж . Б. Л. Фуко реализовал высказанную в 1838 идею Д. Араго применив вместозубчатого диска быстровращающееся (512 об/с) зеркало. Отражаясь от зеркала, <пучок света направлялся на базу и по возвращении вновь попадал на это же зеркало, успевшее повернуться на некрый малый угол При базе всего в 20 м Фуко нашёл, что С. с. равна 298000 500 км/с. Схемы и основные идеи опытов Физо и Фуко были многократно использованы в последующих работах по определению С. с. Полученное А. Майкельсоном в 1926 значение 299796+-4 км/сек

6 стр., 2785 слов

Понятие и система принципов уголовного судопроизводства

... вывод, что под принципами уголовного процесса следует понимать закрепленные в законе основополагающие начала, определяющие сущность и обеспечивающие единство уголовного судопроизводства, являющиеся гарантией законности деятельности всех его участников.Принципом уголовного процесса может быть лишь ...

Разница между материальными обектам.

Свет обладает корпускулярно-волновым дуализмом, т.е. он может проявлять свойства как волны, так и частицы. В одних случаях можно пренебречь свойствами волны, в других — свойствами частицы.

  1. Каково устройство атома? Какие эксперименты подтверждают наличие у атома ядра, и его составную структуру?

Атом состоит из 6 стабильных элементарных частиц микромира, которые вложены друг в друга по принципу — «Матрешки». Вот эти частицы: Субчастица, гамма-квант, фотон, нейтрино, электрон и протон. Таким образом, в механизме устройства атома присутствует, всего 6 частиц, обладающих широким спектром качественного характера, как имеющих массу, так и без массы. Конечно, эти частицы могут существовать отдельно, но для комфортного существования каждая стремится быть

Эксперимент Резерфорда

От радиоактивного источника, заключенного в свинцовый контейнер, α-частицы направлялись на тонкую металлическую фольгу. Рассеянные частицы попадали на экран, покрытый слоем кристаллов сульфида цинка, способных светиться под ударами быстрых заряженных частиц. Сцинтилляции (вспышки) на экране наблюдались глазом с помощью микроскопа. Наблюдения рассеянных α-частиц в опыте Резерфорда можно было проводить под различными углами φ к первоначальному направлению пучка. Было обнаружено, что большинство α-частиц проходит через тонкий слой металла, практически не испытывая отклонения. Однако небольшая часть частиц отклоняется на значительные углы, превышающие 30°. Очень редкие α-частицы (приблизительно одна на десять тысяч) испытывали отклонение на углы, близкие к 180°.

Этот результат был совершенно неожиданным даже для Резерфорда. Его представления находилbcm в резком противоречии с моделью атома Томсона, согласно которой положительный заряд распределен по всему объему атома. При таком распределении положительный заряд не может создать сильное электрическое поле, способное отбросить α-частицы назад. Электрическое поле однородного заряженного шара максимально на его поверхности и убывает до нуля по мере приближения к центру шара. Если бы радиус шара, в котором сосредоточен весь положительный заряд атома, уменьшился в n раз, то максимальная сила отталкивания, действующая на α-частицу, по закону Кулона возросла бы в n 2 раз. Следовательно, при достаточно большом значении n α-частицы могли бы испытать рассеяние на большие углы вплоть до 180°. Эти соображения привели Резерфорда к выводу, что атом почти пустой, и весь его положительный заряд сосредоточен в малом объеме. Эту часть атома Резерфорд назвал атомным ядром. Так возникла ядерная модель атома. Рис. 6.1.3 иллюстрирует рассеяние α-частицы в атоме Томсона и в атоме Резерфорда.

13 стр., 6366 слов

Элементарные частицы

... частиц, они образуются заново за счёт превращений внутри ядра. При этом при вылете позитрона (положительного заряда) ... частицы. Метод фотоэмульсий. Советские физики Л. В. Мысовский и А. П. Жданов впервые применили для регистрации элементарных частиц фотопластинки. Заряженная частица, ... в нормальное состояние, атомы испускают видимый свет. Вещества, в которых заряженные частицы возбуждают заметную ...

Таким образом, опыты Резерфорда и его сотрудников привели к выводу, что в центре атома находится плотное положительно заряженное ядро, диаметр которого не превышает 10 –14 –10–15 м. Это ядро занимает только 10–12 часть полного объема атома, но содержит весь положительный заряд и не менее 99,95 % его массы.

  1. Что такое астрономическая единица, какова ее величина? Каков размер солнечной системы ?

единица (а.е.) — исторически сложившаяся единица измерения расстояний в астрономии, равная 149´597´870,610 км.

Солнечная система — планетная система, включающая в себя центральную звезду — Солнце — и все естественные космические объекты, вращающиеся вокруг неё.

Планеты отделены от нас огромными расстояниями в десятки и сотни миллионов километров. В пределах солнечной системы за единицу расстояния принимают астрономическую единицу, т.е среднее расстояние от земли до солнца , составляет 149,6 млн. км. Свет проходит это расстояние за 8 млн 19с. Средний радиус орбиты самой далекой из известных нам планет – Плутона — 40 а. е.

Однако пределы солнечной системы не ограничиваются поперечником орбиты Плутона — на самом деле они значительно его превышают. Исходя из чисто физических соображений, за ее внешнюю границу можно было бы принять расстояние, на котором происходит торможение в межзвездном газе непрерывно вытекающей из Солнца и заполняющей все околосолнечное пространство плазмы – «солнечного ветра». Границы этой области называются гелиопаузой. Другим более правильным критерием служит граница, на которой сила притяжения солнца сравнивается с силой притяжения ближайших к нам звезд. Этот критерий приводит к оценке размера Солнечной системы порядка 150000 а.е

  1. Какой была древнейшая жизнь , когда и каких условиях она зародилась?

Наши знания о ранее живших организмах невелики. Ведь миллиарды особей, представлявших самые разные виды, исчезли, не оставив никакого следа. По оценке некоторых палеонтологов, в ископаемом состоянии до нас дошли останки только 0,01% всех видов живых организмов, населявших Землю. Среди них только те организмы, которые могли сохранить структуру своих форм путем замещения или в результате сохранности отпечатков. Все прочие виды до нас просто не дошли, и о них мы не сможем узнать ничего и никогда.

Долгое время считалось, что возраст древнейших отпечатков живых организмов, к которым относятся трилобиты и другие высокоорганизованные водные организмы, составляет 570 млн лет. Позже были найдены следы намного более древних организмов – минерализовавшихся нитчатых и округлых микроорганизмов примерно десятка различных видов, напоминающих простейшие бактерии и микроводоросли. Возраст этих останков был оценен в 3,2–3,5 млрд лет. Они были найдены в кремнистых пластах Западной Австралии. Эти организмы, видимо, имели сложную внутреннюю структуру, в них присутствовали химические элементы, соединения которых были способны осуществлять фотосинтез. Данные организмы бесконечно сложны по сравнению с самым сложным из известных органических соединений неживого (абиогенного) происхождения. Нет сомнений, что это не самые ранние формы жизни, и что существовали их более древние предшественники.

7 стр., 3382 слов

Значение водорослей в природе и жизни человека

... всей первичной продукции на Земле. Все водные животные зависят от этой первичной продукции. Водоросли -- древнейшие фотосинтезирующие организмы на Земле. Они являются создателями кислородной атмосферы. Водоросли участвуют в круговороте ... жизненных функций, всегда будут привлекать к ним внимание исследователей. 2. Роль водорослей в жизни человека Мир рек и морей дарит людям огромное разнообразие и ...

Поэтому сегодня ученые уже не сомневаются в том, что истоки жизни на Земле уходят в тот «темный» первый миллиард лет существования нашей планеты, не оставивший следа в ее геологической истории. Подтверждает эту точку зрения и тот факт, что известный биогеохими-ческий цикл углерода, связанный с фотосинтезом в биосфере, стабилизировался более 3,8 млрд лет назад. Это позволяет считать, что фотоавтотрофная биосфера существовала на нашей планете не менее 4 млрд лет назад. Но по данным цитологии и молекулярной биологии, фотоавтотрофные организмы были вторичными в процессе эволюции живого вещества. Автотрофному способу питания живых организмов должен был предшествовать гетеротрофный способ, как более простой. Автотрофные организмы, строящие свое тело за счет неорганических минеральных веществ, имеют более позднее происхождение. Об этом свидетельствуют

  • все современные организмы обладают системами, приспособленными к использованию готовых органических веществ как исходного строительного материала для процессов биосинтеза;
  • преобладающее число видов организмов в современной биосфере Земли может существовать только при постоянном снабжении готовыми органическими веществами;
  • у гетеротрофных организмов не встречается никаких признаков или рудиментарных остатков тех специфических ферментных комплексов и биохимических реакций, которые необходимы для автотрофного способа питания.

Таким образом, можно сделать вывод о первичности гетеротрофного способа питания. Древнейшая жизнь, вероятно, существовала в качестве гетеротрофных бактерий, получавших пищу и энергию от органического материала абиогенного происхождения, образовавшегося еще раньше, на космической стадии эволюции Земли. На этом основании начало жизни как таковой отодвигается еще дальше, за пределы каменной летописи земной коры, более чем

на 4 млрд лет назад.

Учитывая вышесказанное, нетрудно прийти к общему заключению о том, что жизнь на Земле существует примерно столько же времени, сколько существует сама планета. Именно это имел в виду В.И. Вернадский, когда говорил о вечности жизни на Земле.

Говоря о древнейших организмах на Земле, также следует отметить, что по типу своего строения они были прокариотами, возникшими вскоре после появления археклетки. В отличие от эукариотов они не имели оформленного ядра, и молекула ДНК располагалась в клетке свободно, т.е. не была отделена от цитоплазмы ядерной мембраной. Различия между прокариотами и эукариотами гораздо глубже, чем между высшими растениями и высшими животными, те и другие относятся к эукариотам. Представители прокариотов живут и сегодня. Это бактерии и сине-зеленые водоросли. Очевидно, первые организмы, жившие в очень жестких условиях первоначальной Земли, были похожи на них.

Ученые также не сомневаются в том, что древнейшие организмы Земли были анаэробными организмами, получавшими необходимую им энергию за счет дрожжевого брожения. Большинство современных организмов являются аэробными и используют кислородное дыхание (окислительные процессы), дающее им необходимое количество энергии для жизни.

8 стр., 3864 слов

Биология : Способы размножения живых организмов. Эволюция размножения

... размножение с помощью одноклеточных спор свойственно и различным грибам и водорослям. Споры ... размножение — отводками, черенками или прививками почек на другие деревья. Бесполое размножение, воспроизводящее идентичные исходному организму особи, не способствует появлению организмов с новыми вариантами признаков, а тем ... размножения имел огромное значение для эволюции жизни на Земле. Половое размножение ...

Сегодня уже не вызывает сомнений, что В.И. Вернадский, предположивший, что жизнь сразу возникла в виде примитивной биосферы, был прав. Только разнообразие видов живых организмов могло обеспечить выполнение всех функций живого вещества в биосфере. Ведь жизнь является мощнейшей геологической силой, вполне сравнимой по энергетическим затратам и внешним эффектам с такими геологическими процессами, как горообразование, извержение вулканов, землетрясения и т.д. Жизнь не просто существует в окружающей ее среде, но активно эту среду формирует, преобразуя ее «под себя». Не следует забывать, что весь лик современной Земли, все ее ландшафты, все осадочные породы, метаморфические породы (граниты, гнейсы, образовав-шиеся из осадочных пород), запасы полезных ископаемых, современная атмосфера являются результатом действия живого вещества.

Эти данные позволили Вернадскому утверждать, что с самого начала биосферы входящая в нее жизнь должна была быть уже сложным телом, а не однородным веществом, так как биогеохимические функции жизни в силу своего разнообразия и сложности не могут быть связаны только с какой-то одной формой жизни. Таким образом, первичная биосфера изначально была представлена богатым функциональным разнообразием. Поскольку организмы проявляются не единично, а в массовом эффекте, первое появление жизни должно было произойти не в виде какого-то одного вида организмов, а в их совокупности. Иными словами, сразу должны были появиться первичные биоценозы. Состояли они из простейших одноклеточных организмов, так как все без исключения функции живого вещества в биосфере могут быть выполнены ими.

И, наконец, следует сказать, что первичные организмы и биосфера могли существовать только в воде. Выше мы уже говорили, что все организмы нашей планеты теснейшим образом связаны с водой. Именно связанная вода, не теряющая своих основных свойств, является важнейшим составным компонентом живых организмов и составляет 60–99,7% веса.

Именно в водах первичного океана образовался «первичный бульон». Ведь морская вода сама по себе представляет естественный раствор, содержащий все химические элементы. В ней образовались вначале простые, а затем и сложные органические соединения, среди которых были аминокислоты и нуклеотиды. В этом «первичном бульоне» и произошел скачок, давший начало жизни на Земле. Немаловажное значение для появления и дальнейшего развития жизни имела радиоактивность воды, которая тогда была в 20–30 раз большей, чем сейчас. Хотя первичные организмы были намного устойчивее к радиации, чем современные, мутации в те времена происходили намного чаще, поэтому естественный отбор шел интенсивнее, чем в наши дни.