отрицательных чисел — это было сделано китайскими математиками за два века до н. э. Отрицательные числа применяли в III веке древнегреческий математик Диофант, знавший уже правила действия над ними, а в VII веке эти числа уже подробно изучили индийские ученые, которые сравнивали такие числа с долгом. С помощью отрицательных чисел можно было единым образом описывать изменения величин. Уже в VIII веке было установлено, что квадратный корень из положительного числа имеет два значения — положительное и отрицательное, а из отрицательных чисел квадратный корень извлекать нельзя: нет такого числа , чтобы .
2. На пути к комплексным числам
В XVI веке в связи с изучением кубических уравнений оказалось необходимым извлекать квадратные корни из отрицательных чисел. В формуле для решения кубических уравнений вида кубические и квадратные корни: .
Эта формула безотказно действует в случае, когда уравнение имеет один действительный корень ( x=1), а если оно имеет три действительных корня ( x1=1 x2,3 =), то под знаком квадратного корня оказывалось отрицательное число. Получалось, что путь к этим корням ведет через невозможную операцию извлечения квадратного корня из отрицательного числа. Вслед за тем, как были решены уравнения 4-й степени, математики усиленно искали формулу для решения уравнения 5-й степени. Но Руффини (Италия) на рубеже XVIII и XIX веков доказал, что буквенное уравнение пятой степени нельзя решить алгебраически; точнее: нельзя выразить его корень через буквенные величины a, b, c, d, e с помощью шести алгебраических действий (сложение, вычитание, умножение, деление, возведение в степень, извлечение корня).
В 1830 году Галуа (Франция) доказал, что никакое общее уравнение, степень которого больше чем 4, нельзя решить алгебраически. Тем не менее, всякое уравнение n-й степени имеет (если рассматривать и комплексные числа) n корней (среди которых могут быть и равные).
В этом математики были убеждены еще в XVII веке (основываясь на разборе многочисленных частных случаев), но лишь на рубеже XVIII и XIX веков упомянутая теорема была доказана Гауссом.
Итальянский алгебраист Дж. Кардано в 1545 г. предложил ввести числа новой природы. Он показал, что система уравнений , не имеющая решений во множестве действительных чисел, имеет решения вида , , нужно только условиться действовать над такими выражениями по правилам обычной алгебры и считать что .
Бюджетное ограничение потребителя: понятие, графическое представление. ...
... восполнят свои пробелы. Так что же такое бюджетное ограничение? Бюджетные ограничения, потребительский, или личный, бюджет - это денежный ... некоторые свойства бюджетной линии: 1). Бюджетная линия имеет отрицательный наклон. Поскольку наборы благ, находящихся на бюджетной линии, ... значения с и d в уравнение(2). Уравнение бюджетной линии выглядит: Наклон бюджетной линии показывает от какого количества ...
3. Утверждение комплексных чисел в математике
Кардано называл такие величины «чисто отрицательными» и даже «софистически отрицательными», считал их бесполезными и старался их не употреблять. В самом деле, с помощью таких чисел нельзя выразить ни результат измерения какой-нибудь величины, ни изменение какой-нибудь величины. Но уже в 1572 году вышла книга итальянского алгебраиста Р. Бомбелли, в которой были установлены первые правила арифметических операций над такими числами, вплоть до извлечения из них кубических корней. Название «мнимые числа» ввел в 1637 году французский математик и философ Р. Декарт, а в 1777 году один из крупнейших математиков XVIII века — Л. Эйлер предложил использовать первую букву французского слова imaginaire (мнимый) для обозначения числа (мнимой единицы).
Этот символ вошел во всеобщее употребление благодаря К. Гауссу . Термин «комплексные числа» так же был введен Гауссом в 1831 году. Слово комплекс (от латинского complexus) означает связь, сочетание, совокупность понятий, предметов, явлений и т. д. Образующих единое целое.
В течение XVII века продолжалось обсуждение арифметической природы мнимых чисел, возможности дать им геометрическое обоснование.
Постепенно развивалась техника операций над мнимыми числами. На рубеже XVII и XVIII веков была построена общая теория корней n-ых степеней сначала из отрицательных, а за тем из любых комплексных чисел, основанная на следующей формуле английского математика А. Муавра (1707): (подробнее смотри приложение).
С помощью этой формулы можно было так же вывести формулы для косинусов и синусов кратных дуг. Л. Эйлер вывел в 1748 году замечательную формулу : , которая связывала воедино показательную функцию с тригонометрической. С помощью формулы Л. Эйлера можно было возводить число e в любую комплексную степень. Любопытно, например, что . Можно находить sin и cos от комплексных чисел, вычислять логарифмы таких чисел, то есть строить теорию функций комплексного переменного.
В конце XVIII века французский математик Ж. Лагранж смог сказать, что математический анализ уже не затрудняют мнимые величины. С помощью мнимых чисел научились выражать решения линейных дифференциальных уравнений с постоянными коэффициентами. Такие уравнения встречаются, например, в теории колебаний материальной точки в сопротивляющейся среде. Еще раньше швейцарский математик Я. Бернулли применял комплексные числа для решения интегралов.
Хотя в течение xviii века с помощью комплексных чисел были решены многие вопросы, в том числе и прикладные задачи, связанные с картографией, гидродинамикой и т. д., однако еще не было строго логического обоснования теории этих чисел. По этому французский ученый П. Лаплас считал, что результаты, полученные с помощью мнимых чисел, — только наведение, приобретающее характер настоящих истин лишь после подтверждения прямыми доказательствами.
«Никто ведь не сомневается в точности результатов, получаемых при вычислениях с мнимыми количествами, хотя они представляют собой только алгебраические формы иероглифы нелепых количеств» Л. Карно.
Комплексные экспертизы и комплекс экспертиз: сущность и отличия. ...
... О КОМПЛЕКСНОЙ ЭКСПЕРТИЗЕ И КОМПЛЕКСЕ ЭКСПЕРТИЗ 2.1 Разграничение понятий «комплексная экспертиза» и «комплекс экспертиз» 2.2 Предмет в комплексной судебной экспертизе и комплексе экспертиз 2.3 Определение объекта в комплексной экспертизе и комплексе экспертиз 2.4 Методы комплексных судебных экспертиз 3 ...
После создания теории комплексных чисел возник вопрос о существовании «гиперкомплексных» чисел — чисел с несколькими «мнимыми» единицами. Такую систему вида , где , построил в 1843 году ирландский математик У. Гамильтон, который назвал их «кватернионами». Правила действия над кватернионами напоминает правила обычной алгебры, однако их умножение не обладает свойством коммутативности (переместительности): например, , а . Гиперкомплексные числа не являются темой моего реферата, поэтому я лишь упоминаю об их существовании.
Большой вклад в развитие теории функций комплексного переменного внесли русские и советские ученые Н. И. Мусхелишвили занимался ее применениями к упругости, М. В. Келдыш и М. А. Лаврентьев — к аэро- и гидродинамике, Н. Н. Богомолов и В. С. Владимиров — к проблемам квантовой теории поля.
Комплексные числа и их свойства
1. О комплексных числах
В связи с развитием алгебры потребовалось ввести сверх прежде известных положительных и отрицательных чисел числа нового рода. Они называются комплексными. Комплексное число имеет вид a + bi; здесь a и b — действительные числа , а i — число нового рода, называемое мнимой единицей. «Мнимые» числа составляют частный вид комплексных чисел (когда а = 0).
С другой стороны, и действительные числа являются частным видом комплексных чисел (когда b = 0).
Действительное число a назовем абсциссой комплексного числа a + bi; действительное число b — ординатой комплексного числа
a + bi. Основное свойство числа i состоит в том, что произведение i*i равно -1, т.е.
i2= -1. (1)
Долгое время не удавалось найти такие физические величины, над которыми можно выполнять действия, подчинённые тем же правилам, что и действия над комплексными числами — в частности правилу (1).
Отсюда названия: «мнимая единица», «мнимое число» и т.п. В настоящее время известен целый ряд таких физических величин, и комплексные числа широко применяются не только в математике, но также и в физике и технике.
Правило каждого действия над комплексными числами выводится из определения этого действия. Но определения действий над комплексными числами не вымышлены произвольно, а установлены с таким расчетом, чтобы согласовались с правилами действий над вещественными числами. Ведь комплексные числа должны рассматриваться не в отрыве от действительных, а совместно с ними.
Действительное число а записывается также в виде a + 0i (или a — 0i).
Примеры. Запись 3 + 0i обозначает то же, что запись 3. Запись -2 + 0i означает -2.
Комплексное число вида 0 + bi называется «чисто мнимым». Запись bi обозначает то же, что 0 + bi. Два комплексных a + bi, a’ + b’i считаются равными, если у них соответственно равны абсциссы и ординаты, т. е. Если a = a’, b = b’. В противном случае комплексные числа не равны. Это определение подсказывается следующим соображением. Если бы могло существовать, скажем, такое равенство:
Закон больших чисел
... условия и составляют наиболее важное содержание закона больших чисел. Первым примером действия этого принципа и может служить сближение частоты наступления случайного события с его вероятностью при возрастании числа испытаний ... леммы Чебышева для случайной величины при : Далее: что и требовалось доказать. Следствие. Поскольку и то другая форма неравенства Чебышева Примем без доказательства факт, ...
2 + 5i = 8 + 2i, то по правилам алгебры мы имели бы i = 2, тогда как i не должно бать действительным числом.
2. Геометрическое изображение комплексных чисел
Действительные числа можно изобразить точками прямой линии, где точка K изображает число 5. Это число можно изобразить также отрезком ОK, учитывая не только его длину, но и направление.
Каждая точка С «числовой прямой» изображает некоторое действительное число (рациональное, если отрезок ОС соизмерим с единицей длины, и иррациональное, если несоизмерим).
Таким образом, на «числовой прямой» не остаётся места для комплексных чисел.
Но комплексные числа можно изобразить на «числовой прямой». Для этого мы выбираем на плоскости прямоугольную систему координат с одним и тем же масштабом на обеих осях. Комплексное число a + bi мы изображаем точкой М, у которой абсцисса х равна абсциссе а комплексного, а ордината у равна ординате b комплексного числа.
Примеры. Точка А с абсциссой х=3 и ординатой у=5 изображает комплексное число 3 + 5i. Точка В (-4,-5) изображает комплексное число -4 — 5i.
Действительные числа (в комплексной форме они имеют вид a + 0i) изображают точками оси OХ, а чисто мнимые — точками оси OУ.
Примеры. Точка К изображает действительное число 5, точка L — чисто мнимое число 3i. Начало координат изображает число 0.
Сопряжённые комплексные числа изображаются парой точек, симметричных относительно оси абсцисс; так, точки А и А’ на рис. 2 изображают сопряжённые числа 3 +5i и 3 -5i.
Комплексные можно изображать также отрезками, начинающимися в точке О и оканчивающимися в соответствующей точке числовой плоскости. Так, комплексное число a + bi можно изобразить не только точкой M (рис. 1), но также вектором ОM .
Замечание. Давая какому — либо отрезку наименование «вектор», мы подчёркиваем, что существенное значение имеет не только длина, но и направление отрезка.
Геометрическое истолкование комплексных чисел позволило определить многие понятия, связанные с функцией комплексного переменного, расширило область их применения.
Стало ясно, что комплексные числа полезны во многих вопросах, где имеют дело с величинами, которые изображаются векторами на плоскости: при изучении течения жидкости, задач теории упругости.
3. Тригонометрическая форма комплексного числа
Абсцисса а и ордината b комплексного числа a + bi выражаются через модуль r и аргумент q. Формулами
a = r cos q , r=a/cos q
b = r sin q , r=b/sin q
r — длина вектора (a+bi) , q — угол, который он образует с положительным направлением оси абсцисс (см. рис. 1).
Поэтому всякое комплексное число можно представить в виде r(cos q + i sin q), где r > 0 т.е. z=a+bi или z=r*cos q + r*sin q
Это выражение называется нормальной тригонометрической формой или, короче, тригонометрической формой комплексного числа.
Действия с комплексными числами
1. Сложение комплексных чисел
Определение: Суммой комплексных чисел a + bi и a’ + b’i называют комплексное число (a + a’) + (b + b’)i.
Это определение подсказывается правилами действий с обычными многочленами.
Пример 1. (-3 + 5i) + (4 — 8i) = 1 — 3i
Издержки производства и себестоимость продукции сельского хозяйства ...
... по величине созданной этим трудом стоимости, а по затратам на оплату труда. В издержки производства включают не стоимость земельных ресурсов и основных средств, а только затраты, связанные ... от их места возникновения и целевого назначения не делятся на различные компоненты. Комплексными называются затраты, состоящие из нескольких элементов, например, цеховые и общезаводские расходы, ...
Пример 2. (2 + 0i) + (7 + 0i) = 9 + 0i. Так как запись 2 + 0i означает то же, что и 2 и т. д., то наполненное действие согласуется с обычной арифметикой (2 + 7=9).
Пример 3. (0 + 2i) + (0 + 5i) = 0 + 7i, т. е. 2i + 5i = 7i
Пример 4. (-2 + 3i) + ( — 2 — 3i) = — 4
В примере 4 сумма двух комплексных чисел равна действительному числу. Два комплексных числа a+bi и a-bi называются сопряженными. Сумма сопряженных комплексных чисел равна действительному числу.
Для комплексных чисел справедливы переместительный и сочетательный законы сложения. Их справедливость следует из того, что сложение комплексных чисел по существу сводится к сложению действительных частей и коэффициентов мнимых частей, а они являются действительными числами, для которых справедливы указанные законы.
2. Вычитание комплексных чисел
Определение. Разностью комплексных чисел a + bi (уменьшаемое) и a’ + b’i (вычитаемое) называется комплексное число (a — a’) + (b — b’)i.
Пример 1. (-5 + 2i) — (3 — 5i) = -8 + 7i
Пример 2. (3 + 2i) — (-3 + 2i) = 6 + 0i = 6
3. Умножение комплексных чисел
Определение. Произведением комплексных чисел a + bi и a’ + b’i называется комплексное число
(aa’ — bb’) + (ab’ + ba’)i.
Замечание. На практике нет нужды пользоваться формулой произведения. Можно перемножить данные числа, как двучлены, а затем положить, что i2 = -1.
Пример 1. (1 — 2i)(3 + 2i) = 3 — 6i + 2i — 4i 2 = 3 — 6i + 2i + 4 = 7 — 4i.
Пример 2. (a + bi)(a — bi) = a2 + b 2
Пример 2 показывает, что произведение сопряженных комплексных чисел есть действительное и притом положительное число.
Для умножения комплексных чисел также справедливы переместительный и сочетательный законы, а также распределительный закон умножения по отношению к сложению.
4. Деление комплексных чисел
В соответствии с определением деления действительных чисел устанавливается следующее определение.
Определение. Разделить комплексное число a + bi на комплексное число a’ + b’i — значит найти такое число x + yi, которое, будучи помножено на делитель, даст делимое.
Конкретное правило деления получим, записав частное в виде дроби и умножив числитель и знаменатель этой дроби на число, сопряженное со знаменателем: (a + bi):(c + di)=
Пример 1. Найти частное (7 — 4i):(3 + 2i).
Записав дробь (7 — 4i)/(3 + 2i), расширяем её на число 3 — 2i, сопряженное с 3 + 2i. Получим:
((7 — 4i)(3 — 2i))/((3 + 2i)(3 — 2i)) = (13 — 26i)/13 = 1 — 2i.
Пример 1 предыдущего пункта даёт проверку.
Пример 2. (-2 +5i)/(-3 -4i) = ((-2 + 5i)(-3 — 4i))/((-3 — 4i)( -3 + 4i)) = (-14 -23i)/25 = -0,56 — 0.92i.
Чтобы доказать, что правая часть действительно является частным, достаточно помножить её на a’ + b’. Получим a + bi.
Решение уравнений с комплексными переменными
комплексный число сложение переменная
Рассмотрим сначала простейшее квадратное уравнение z2 = a, где а — заданное число, z — неизвестное. На множестве действительных чисел это уравнение:
Банкротство на примере
... финансового состояния предприятия в целях диагностики банкротства на примере ООО «Контакт – Строй» 2009 год ... период времени. Мероприятия по антикризисному управлению осуществляются на различных стадиях банкротства. В данной работе были рассмотрены цели и методы ... Пермь: ПСИ, 2006. – 120 с. Донцова Л.В., Никифорова Н.А. Комплексный анализ бухгалтерской отчетности. М: Дело и сервиз, 2001г. Ефимова ...
1) имеет один корень z = 0, если а = 0;
2) имеет два действительных корня z1,2 = , если а>0;
3) не имеет действительных корней, если а<0.
На множестве комплексных чисел это уравнение всегда имеет корень .
Задача 1. Найти комплексные корни уравнения z2 = a, если:
1) а = -1; 2) а = -25; 3) а = -3.
1) z2 = -1. Так как i2 = -1, то это уравнение можно записать в виде z2 = i2, или z2 — i2 = 0. Отсюда, раскладывая левую часть на множители, получаем (z-i)(z+i) = 0, z1 = i, z2 = -i.Ответ. z1,2 = i.
2) z2 = -25. Учитывая, что i2 = -1,преобразуем это уравнение:
z2 = (-1)25,
z2 = i2 52, z2 — 52 i2= 0, (z-5i)(z+5i) = 0, откуда z1 = 5i, z2 = -5i.Ответ:
z 1,2 = 5i.
3) z2 = -3, z2 = i2()2, z2 — ()2i2 = 0, (z — i)(z + i) = 0
Ответ: z1,2 = i.
Вообще уравнение z2 = a, где а < 0 имеет два комплексных корня: Z1,2= i.
Используя равенство i2 = -1, квадратные корни из отрицательных чисел принято записывать так: = i, = 2i, = i .
Итак, определен для любого действительного числа а (положительного, отрицательного и нуля).
Поэтому любое квадратное уравнение az2 + bz + c = 0, где а, b, с — действительные числа, а 0, имеет корни. Эти корни находятся по известной формуле:
Z1,2 = .
Задача 2. Решить уравнение z2-4z+13=0. По формуле находим: z1,2 = = = 2 3i.
Заметим, что найденные в этой задаче корни являются сопряженными: z1=2+3i и z2=2-3i. Найдем сумму и произведение этих корней: z1+z2=(2+3i)+(2-3i)=4, z1z2=(2+3i)(2-3i)=13.
Число 4 — это 2-й коэффициент уравнения z2-4z+13=0, взятый с противоположным знаком, а число 13- свободный член, то есть в этом случае справедлива теорема Виета. Она справедлива для любого квадратного уравнения: если z1 и z2 — корни уравнения az2+bz+c = 0, z1+z2 = , z1z2 = .
Задача 3. Составить приведенное квадратное уравнение с действительными коэффициентами, имеющие корень z1=-1-2i.
Второй корень z2 уравнения является числом, сопряженным с данным корнем z1, то есть z2=-1+2i. По теореме Виета находим
P=-(z1+z2)=2, q=z1z2=5. Ответ z2-2z+5=0.
Приложение.
В качестве приложения я хочу рассмотреть формулу (иногда в литературе она имеет название теоремы) Муавра. Она имеет большое значение в тригонометрии, потому что позволяет выражать синусы и косинусы углов (n*x), где n — любое целое число, через простые функции sin x и cos x.
Формула:
где i — мнимая часть комплексного числа, i2 = -1
Пример:
cos3q + i*sin3q =(cosq + i*sinq)3 = cos3 q + 3i cos2 q * sinq + 3i2 * cosq * sin2 q + i3 sin3 q = cos3 q — 3cosq * sin2 q + i*(3cos2 q * sinq — sin3 q)
Приравнивая абсциссы и ординаты, получаем:
cos3q = cos3 q — 3cosq * sin2 q
sin3q = 3cos2 q * sinq — sin3 q
Таким же образом можно значительно упростить sin4x, cos4x (sin5x, cos5x и т.д.) до выражений, содержащих sinx и cosx
Заключение
Комплексные числа, несмотря на их «лживость» и недействительность, имеют очень широкое применение. Они играют значительную роль не только в математике, а также в таких науках, как физика, химия. В настоящее время комплексные числа активно используются в электромеханике, компьютерной и космической индустрии.
Экономические СПОры | 13. Либо вы любите это число, либо оно Вас! | VK
... Практике Диплом Значение Культуры Реферат Отчет Социально Педагогической Практика История Правовых Учений Реферат Виды Легкой Атлетики Реферат По Физкультуре Системность И Комплексность Экономического Анализа Реферат Реферат Про Морепродукты Правомерное Поведение ...
Именно поэтому нам расширять свои знания о комплексных числах, их свойствах и особенностях. Основные элементы учения о комплексных числах рассмотрены мною в данном реферате.