Виды защиты, используемые в автоматизированных информационных системах

Вместе с тем теоретическая проработка вопросов обеспечения безопасности информации и их практическая реализация долгое время отставали от уровня развития программной индустрии СУБД, и в коммерческих продуктах средства обеспечения безопасности данных стали появляться лишь в 90-х годах.

«Критерии оценки надежных компьютерных систем»,

Подходы к построению и анализу защищенных систем, представленные в «Оранжевой книге», послужили методологической и методической базой для дальнейших исследований в этой сфере. В 1991 г. NCSC был издан новый документ — Интерпретация «Критериев оценки надежных компьютерных систем» в применении к понятию надежной системы управления базой данных, известный под сокращенным названием TDI или «Розовой книги», конкретизирующий и развивающий основные положения «Оранжевой книги» по вопросам создания и оценки защищенных СУБД.

«Руководящие документы по защите от несанкционированного доступа к информации»,

Понятие и модели безопасности данных

Исследования по проблемам защиты компьютерной информации, проведенные в конце 70-х—начале 80-х годов, развитые впоследствии в различных приложениях и закрепленные в соответствующих стандартах, определяют в качестве составных элементов понятия безопасности информации три компонента:

конфиденциальность

целостность

доступность

нарушители

моделью нарушителя (злоумышленника).

политикой безопасности.

Модель безопасности включает:

  • модель компьютерной (информационной) системы;
  • критерии, принципы, ограничения и целевые функции защищенности информации от угроз;
  • формализованные правила, ограничения, алгоритмы, схемы и механизмы безопасного функционирования системы.

субъектно-объектная модель

Рис. 1. База данных АИС в моделях безопасности данных

Определяются два основополагающих принципа безопасности функционирования информационных систем:

  • персонализация
  • разграничение полномочий субъектов

монитором

Рис. 2. Схематический аспект защиты информации в компьютерных системах

В узком смысле политика безопасности, реализуемая монитором безопасности компьютерной системы, собственно и определяет модель безопасности (вторая и третья компоненты).

(одноуровневая)

Обозначения: Ч – чтение; М – модификация; С – создание; У – удаление (записей)

Рис. 3. Модель безопасности на основе матрицы доступа (дискреционный принцип разграничения доступа)

4 стр., 1826 слов

Средства массовой информации в политической системе России

... существование общества без средств массовой информации. Несомненно, что средства массовой информации играют значительную роль в обществе. Потребности политической системы в средствах массовой информации и коммуникации прямо зависят ... механизм, действующий по принципу «стимул-реакция». В рациональной модели манипулирование осуществляется не через использование психологических мотивов, а посредством ...

Важным аспектом моделей безопасности является управление доступом. Существует два подхода:

  • добровольное управление доступом;
  • принудительное управление доступом.

добровольном управлении доступом

Такой подход обеспечивает гибкость настраивания системы разграничения доступа в базе данных на конкретную совокупность пользователей и ресурсов, но затрудняет общий контроль и аудит состояния безопасности данных в системе.

Принудительный подход к управлению доступом

Принудительный способ обеспечивает более жесткое централизованное управление доступом. Вместе с тем он является менее гибким и менее точным в плане настройки системы разграничения доступа на потребности и полномочия пользователей, так как наиболее полное представление о содержимом и конфиденциальности объектов (ресурсов) имеют, соответственно, их владельцы.

На практике может применяться комбинированный способ управления доступом, когда определенная часть полномочий на доступ к объектам устанавливается администратором, а другая часть владельцами объектов.

категорирование информационных ресурсов по уровню конфиденциальности

многоуровневую модель безопасности данных,

Рис. 4. Модель безопасности данных Белл — ЛаПадула (мандатный принцип разграничения доступа)

В модели Белл — ЛаПадула объекты и субъекты категорируются по иерархическому мандатному принципу доступы. Субъект, имеющий допуск 1-й (высшей) степени, получает доступ к объектам 1-го (высшего) уровня конфиденциальности и автоматически ко всем объектам более низких уровней конфиденциальности (т. е. к объектам 2-го и 3-го уровней).

Соответственно, субъект со 2-й степенью допуска имеет доступ ко всем объектам 2-го и 3-го уровней конфиденциальности, и т. д.

В модели Белл — ЛаПадула устанавливаются и поддерживаются два основных ограничения политики безопасности:

  • запрет чтения вверх (no read up — NRU);
  • запрет записи вниз (no write down — NWD).

Ограничение NRU является логическим следствием мандатного принципа разграничения доступа, запрещая субъектам читать данные из объектов более высокой степени конфиденциальности, чем позволяет их допуск.

Ограничение NWD предотвращает перенос (утечку) конфиденциальной информации путем ее копирования из объектов с высоким уровнем конфиденциальности в неконфиденциальные объекты или в объекты с меньшим уровнем конфиденциальности.

Ограничения NRU и NWD приводят к тому, что по разным типам доступа («чтение», «создание», удаление», «запись») в модели Белл—ЛаПадула устанавливается разный порядок доступа конкретного субъекта к объектам. В частности, в схеме, приведенной на рис. 7.4, может показаться странным, что по типу доступа «создание» субъект (процесс) с допуском степени 3 (низшей) имеет возможность создавать объекты (записи) в объектах более высокого уровня конфиденциальности. Такой подход, тем не менее, отражает реальные жизненные ситуации, когда работники, к примеру, кадрового подразделения могут заполнять формализованные карточки на новых сотрудников, направляя их в специальную картотеку личных данных сотрудников организации и порождая первые документы личных дел новых сотрудников, но не имеют при этом собственно самого доступа к этой картотеке по другим типам операций (чтение, удаление, изменение).

13 стр., 6399 слов

Персональные данные как составная часть конфиденциальной информации

... лицом конфиденциальности этих данных и безопасности при их обработке. 1.2 Конфиденциальность персональных данных Операторы, обеспечивающие обработку персональных данных, и третьи лица, получающие доступ к персональным данным, обязаны соблюдать их конфиденциальность, за исключением случаев: ь Обезличивание персональных данных - действий, ...

функционально-зонального принципа разграничения доступа.

На практике в реальных политиках мониторов безопасности баз данных чаще всего применяется дискреционный принцип с принудительным управлением доступом, «усиливаемый» элементами мандатного принципа в сочетании с добровольным управлением доступом (допуска субъектов устанавливает и изменяет только администратор, уровень конфиденциальности объектов устанавливают и изменяют только владельцы).

В распределенных СУБД могут также применяться элементы функционально-зонального разграничения доступа в виде жесткой привязки объектов и субъектов к определенным устройствам, а также выделении специальных зон, областей со «своей» политикой безопасности.

При реализации политик и моделей безопасности данных в фактографических АИС на основе реляционных СУБД возникают специфические проблемы разграничения доступа на уровне отдельных полей таблиц. Эти проблемы связаны с отсутствием в реляционной модели типов полей с множественным (многозначным) характером данных.

Поясним суть подобных проблем следующим образом. Предположим, в базе данных имеется таблица с записями по сотрудникам с полями «Лич_№», «Фамилия», «Подразделение», «Должность». Предположим также, что в структуре организации имеется засекреченное подразделение «Отдел_0», известное для всех непосвященных под названием «Группа консультантов». Соответственно поля «Подразделение», «Должность» для записей сотрудников этого подразделения будут иметь двойные значения — одно истинное (секретное), другое для прикрытия (легенда).

Записи таблицы «Сотрудники» в этом случае могут иметь вид:

Таблица 1

В таблице знаком [С] обозначены секретные значения, знаком [НС] несекретные значения соответствующих полей. Как видно из приведенной таблицы, требования первой нормальной формы в таких случаях нарушаются.

косвенные каналы нарушения конфиденциальности.

В более общем виде под косвенным каналом нарушения конфиденциальности подразумевается механизм, посредством которого субъект, имеющий высокий уровень благонадежности, может предоставить определенные аспекты конфиденциальной информации субъектам, степень допуска которых ниже уровня конфиденциальности этой информации.

В определенной степени проблему многозначности и косвенных каналов можно решать через нормализацию соответствующих таблиц, разбивая их на связанные таблицы, уровень конфиденциальности которых, или конфиденциальности части записей которых, будет различным.

Другие подходы основываются на расширении реляционной модели в сторону многозначности и допущения существования в таблицах кортежей с одинаковыми значениями ключевых полей.

Технологические аспекты защиты информации

Практическая реализация политик и моделей безопасности, а также аксиоматических принципов построения и функционирования защищенных информационных систем обусловливает необходимость решения ряда программно-технологических задач, которые можно сгруппировать по следующим направлениям:

7 стр., 3137 слов

Промышленная безопасность на химических объектах

... ЧЕЛОВЕКА И ЗАЩИТА ЧЕЛОВЕКА ОТ ХИМИЧЕСКИХ ВЕЩЕСТВ Аварийно химически опасное вещество - опасное химическое вещество, применяемое в промышленности или сельском хозяйстве, при аварийном выбросе (розливе) которого может произойти заражение окружающей среды в ...

  • технологии идентификации и аутентификации;
  • языки безопасности баз данных;
  • технологии обеспечения безопасности повторного использования объектов;
  • технологии надежного проектирования и администрирования.

Идентификация и аутентификация

Технологии идентификации и аутентификации являются обязательным элементом защищенных систем, так как обеспечивают аксиоматический принцип персонализации субъектов и, тем самым, реализуют первый (исходный) программно-технический рубеж защиты информации в компьютерных системах.

идентификацией

Под аутентификацией понимается проверка и подтверждение подлинности образа идентифицированного субъекта, объекта, процесса.

Как вытекает из самой сути данных понятий, в основе технологий идентификации и аутентификации лежит идеология статистического распознавания образов, обусловливая, соответственно, принципиальное наличие ошибок первого (неправильное распознавание) и второго (неправильное нераспознавание) рода. Методы, алгоритмы и технологии распознавания направлены на обеспечение задаваемых вероятностей этих ошибок при определенных стоимостных или иных затратах.

В системотехническом плане структуру систем идентификации/аутентификации можно проиллюстрировать схемой, приведенной на рис. 5.

При регистрации объекта идентификации/аутентификации в системе монитором безопасности формируется его образ, информация по которому подвергается необратимому без знания алгоритма и шифра-ключа, т. е. криптографическому, преобразованию и сохраняется в виде ресурса, доступного в системе исключительно монитору безопасности. Таким образом формируется информационный массив внутренних образов объектов идентификации/аутентификации.

Рис. 5. Системотехнический аспект идентификации/аутентификации

Впоследствии при идентификации/аутентификации (очередной вход в систему пользователя, запрос процесса на доступ к объекту, проверка подлинности объекта системы при выполнении над ним действий и т. д.) объект через канал переноса информации передает монитору безопасности информацию о своем образе, которая подвергается соответствующему преобразованию. Результат этого преобразования сравнивается с соответствующим зарегистрированным внутренним образом, и при их совпадении принимается решение о распознавании (идентификации) и подлинности (аутентификации) объекта.

Информационный массив внутренних образов объектов идентификации/аутентификации является критическим ресурсом системы, несанкционированный доступ к которому дискредитирует всю систему безопасности. Поэтому помимо всевозможных мер по исключению угроз несанкционированного доступа к нему сама информация о внутренних образах объектов идентификации/аутентификации находится в зашифрованном виде.

Формирование образов осуществляется на разной методологической и физической основе в зависимости от объекта идентификации/аутентификации (пользователь-субъект; процесс; объект-ресурс в виде таблицы, формы, запроса, файла, устройства, каталога и т. д.).

В общем плане для идентификации/аутентификации пользователей-субъектов в компьютерных системах могут использоваться их биометрические параметры (отпечатки пальцев, рисунок радужной оболочки глаз, голос, почерк и т. д.), либо специальные замково-ключевые устройства (смарт-карты, магнитные карты и т. п.).

Однако при доступе непосредственно в АИС (в базы данных), чаще всего используются парольные системы идентификации/аутентификации.

2 стр., 949 слов

Место национальной безопасности в системе конституционного строя России

... основы обеспечения национальной безопасности в пограничном пространстве Российской Федерации; определить понятие и место национальной безопасности в системе конституционного строя ... базы и деятельности государственных органов по обеспечению национальной безопасности в пограничном пространстве Дальнего ... и стране, а также потребностями защиты экономической безопасности России и развития ее международных ...

Парольные системы основаны на предъявлении пользователем в момент аутентификации специального секретного (известного только подлинному пользователю) слова или набора символов — пароля. Пароль вводится пользователем с клавиатуры, подвергается криптопреобразованию и сравнивается со своей зашифрованной соответствующим образом учетной копией в системе. При совпадении внешнего и внутреннего парольного аутентификатора осуществляется распознавание и подтверждение подлинности соответствующего субъекта.

Парольные системы являются простыми, но при условии правильной организации подбора и использования паролей, в частности, безусловного сохранения пользователями своих паролей втайне, достаточно надежным средством аутентификации, и, в силу данного обстоятельства, широко распространены.

Основной недостаток систем парольной аутентификации заключается в принципиальной оторванности, отделимости аутентификатора от субъекта-носителя. В результате пароль может быть получен тем или иным способом от законного пользователя или просто подобран, подсмотрен по набору на клавиатуре, перехвачен тем или иным способом в канале ввода в систему и предъявлен системе злоумышленником.

В результате внутренний образ субъекта существенно расширяется и появляется возможность варьирования аутентификатора при каждом следующем входе пользователя в систему. При входе пользователя в систему монитор безопасности (субъект аутентификации) формирует случайную выборку вопросов и, чаще всего, по статистическому критерию «n из m» принимает решение об аутентификации.

В системах коллективного вхождения парольную аутентификацию должны одновременно пройти сразу все зарегистрированные для работы в системе пользователи. Иначе говоря, поодиночке пользователи работать в системе не могут. Вероятность подбора, перехвата и т. д. злоумышленником (злоумышленниками) сразу всех паролей, как правило, существенно меньше, и, тем самым, надежность подобных систем аутентификации выше.

Аутентификации в распределенных информационных системах в принципе должны подвергаться и объекты (ресурсы, устройства), а также процессы (запросы, пакеты и т. д.).

Аутентифицированный (подлинный) пользователь, обращаясь к объектам системы и порождая соответствующие процессы, должен, в свою очередь, убедиться в их подлинности, например, отправляя распечатать сформированный в базе данных конфиденциальный отчет на сетевой принтер, специально предназначенный для распечатки соответствующих конфиденциальных документов.

Как правило, для аутентификации объектов применяются технологии асимметричных криптосистем, называемых иначе системами с открытым ключом, рассмотрение которых выходит за допустимый объем данного пособия.

Для аутентификации процессов широкое распространение нашли технологии меток (дескрипторов) доступа.

Технология меток

Проверка подлинности метки процесса предотвращает возможные угрозы нарушения безопасности данных путем формирования субъектом для инициируемого им процесса такой метки, которая не соответствует его полномочиям.

4 стр., 1518 слов

Системы безопасности жизнедеятельности

... системы безопасности представлены в табл. 1.3. Таблица 1.3, Системы безопасности, С. В. Белову Поле безопасности. Объект защиты. Система безопасности. Опасности среды деятельности. Человек. Безопасность ... внутренние общегосударственные опасности. Общество Нация Системы безопасности страны. Национальная безопасность. Политическая безопасность Опасности неконтролируемой и неуправляемой общечеловеческой ...

файл (массив) учетных записей.

Массив учетных записей, в свою очередь, является объектом высшей степени конфиденциальности в системе, и доступен только администратору. Ввиду исключительной важности массива учетных записей для безопасности всей системы помимо шифрования его содержимого принимается ряд дополнительных мер к его защите, в том числе специальный режим его размещения, проверка его целостности, документирование всех процессов над ним.

Таким образом, на сегодняшний день наработан и используется развитый набор технологий идентификации/аутентификации в защищенных компьютерных системах. Вместе с тем основные бреши безопасности чаще всего находятся злоумышленниками именно на этом пути.

Список использованной литературы

[Электронный ресурс]//URL: https://urveda.ru/referat/modeli-narushiteley-bezopasnosti-as/

1. Астахова Л. В. Информатика. Часть 1. Социальная информатика: Учебная пособие. — Челябинск, 2002. — 245 с.

2. Бизнес и безопасность. — КМЦ «Центурион», 2002.

3. Информационная безопасность: Учеб. для вузов по гуманитар. и социально- экон. специальностям. — М.: Междунар. отношения: Летописец, 2002.

4. Степанов Е. А., Корнеев И. К. Информационная безопасность и защита информации. — М.: ИНФРА-М, 2003.

5. Чалдаева Л. А. Информационная безопасность компании. / Л. А. Чалдаев, А. А. Килячков // Финансы и кредит. — 2002. — № 18. — С. 32-37.

6. Ярочкин В. И. Коммерческая информация фирмы. Утечка или разглашение? — М.: 2003